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RELAXATION METHODS APPLIED TO
ENGINEERING PROBLEMS

VII A*. BIHARMONIC ANALYSIS AS APPLIED TO
THE FLEXURE AND EXTENSION OF
FLAT ELASTICG PLATES

By L. FOX, B.A. anp R. V. SOUTHWELL, F.R.S.

(Received g March 1941)

By extension of technique described in earlier papers, biharmonic analysis and the solution
of the equation V4w = W are brought within range of the relaxation method. Special atten-
tion is given to the problem of a flat elastic plate which is either bent or stretched (the second
case being that to which photo-elastic methods are commonly applied). In all, four cases are
presented, since the edge conditions may specify either tractions or displacements both in the
flexural and in the extensional problem: one example of each is treated. Mixed boundary
conditions (tractions specified at some points, displacements at others) are not considered in
this paper.

It would seem that only slight modifications of method will be required to deal with aeolo-
tropic plates (which present much greater difficulties in an orthodox analysis).

INTRODUGTION AND SUMMARY

1. The third paper of this series (Christopherson and Southwell 1938) was con-
cerned with the approximate solution of problems in which the wanted function w is
governed by Poisson’s equation in two variables, namely,

Vi = Z, (1)

where V2 stands for the operator d?/dx2+d%/dy? and Z is a specified function of x and y,
together with a boundary condition which fixes the value either of w or of its normal
gradient dw/dv. In special cases Z is zero everywhere: then (1) reduces to Laplace’s

equation
Vaw = 0, (2)

and its solution is a problem in ‘plane-potential theory’.+
This paper deals similarly with the equation

Viw = W, (3)

* This paper is numbered VII A to preserve its sequence between VII and VIII of this series: it
has no special connexion with VIIL.

t In particular, (2) is presented in the problem of conformal transformation. This was treated in
Part V of this series (Gandy and Southwell 1940).
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420 L. FOX AND R. V. SOUTHWELL ON RELAXATION

including the ‘biharmonic equation’
Viw =0 (4)

as a special case. (V? again stands for the operator 02/dx%+02/dy?, and W, like Z, is a
specified function of x and y.) The main difficulty of the new problem lies in the fact
that a double boundary condition is now imposed on w: when V2w is specified at the
boundary, equation (3) or (4) can be integrated in two separate steps, each involving
the solution of (1) or (2); but such separation is not possible when both w and dw/dv
have to take specified values at the boundary, and in some problems still less tractable
boundary conditions are presented. Orthodox methods then seek a solution in the form
of an infinite series, each term of which severally satisfies one but not both of the two
conditions (Love 19284, 4). Though formally satisfactory, a solution of this kind requires
much laborious computation before it can be utilized in engineering design, and in
stress analysis (for example) calculation is usually discarded in favour of experimental
methods depending on the photo-elastic effect, notwithstanding that much labour is
entailed both in the making of the necessary measurements and in their subsequent
reduction.

2. Approximate methods, not restricted to particular shapes of boundary, will have
applications in many branches of mathematical physics. (For example, very slow
motion in two dimensions of a viscous incompressible liquid entails a stream-function
which is biharmonic and vanishes, together with its normal gradient, at a fixed solid
boundary.) Here we consider two problems taken from the Theory of Elasticity, both
relating to a flat plate of uniform thickness and concerned with the distortion of its
‘middle surface’ (§4).

In the first problem the middle surface is bent without extension, and an equation
of the type of (3) relates its transverse displacement w with the specified intensity W of
the transverse loading. In the second the middle surface is stretched but is not bent,
and according to the nature of the stress and strain in directions normal to this surface
we have a case either of ‘plane stress’ or of ‘plane strain’; but in either case the stress
can be expressed in terms of a ‘stress-function’ y which satisfies either the biharmonic
equation (4) or (when body forces as well as edge tractions are operative) an equation
of type (3). Exact mathematical analogies will here be shown to hold between the
flexural and extensional problems as relating to a boundary of given shape; so every
solution of the first problem also provides a solution of the second, and on that under-
standing photo-elastic methods (for example) could be used to determine flexural
deformations.*

In both problems the boundary (i.e. edge) conditions may specify the values either
(A) of displacements or (B) of tractions. Case A of the extensional and case B of the
flexural problem are mathematically analogous, also case A of the flexural and case B

* It is obvious that the analogies must exist, but we are not aware of any published paper in which
they are precisely formulated.
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METHODS APPLIED TO ENGINEERING PROBLEMS 421

of the extensional (§§8—11). Thus, by four physically distinctive cases, only two distinct
problems in mathematics are presented. One appears to be much more difficult than
the other when attacked by orthodox methods, and to have received relatively little
attention.

‘Mixed’ boundary conditions can of course be imposed, i.e. displacements may be
specified at some parts of the boundary and tractions at others. Problems of this kind
present great difficulty whether attacked by orthodox or by relaxation methods, and
every example will call for some special device. They will not receive further notice in
this paper.

3. Our first section starts from the governing equations of the flexural and exten-
sional problems, and for both reduces the boundary conditions to forms which show
that mathematically (cf. §2) the cases calling for separate consideration are not four
but two. Section II explains the theoretical bases of the relaxation treatment, and
Section III deals with practical details. Solutions are obtained to four examples,
namely, a case of specified edge displacements and a case of specified edge tractions in
both the flexural and the extensional problem. The first and third example are relatively
simple, being wanted for the detailed illustration of methods; the other two are fairly
representative of problems confronted in practical work. Section IV contains a brief
discussion of results.

No attempt has been made to review the numerous papers, concerned with
approximate solutions, which have appeared in recent years. It is unlikely, in
present circumstances, that a review of this kind could be made complete; and
until wider experience becomes available, any judgment regarding the merits of
different methods is premature.

I. THEORY
THE FLEXURAL PROBLEM FOR THIN PLATES

4. In the approximate theory of flexure (Rayleigh 1926; Love 1927), the distortion
of a plate is specified in terms of w, the transverse displacement of its middle surface
(i.e. the surface which lies midway between, and parallel with, its two flat faces).
Taking axes Ox, Oy in this surface, and Oz to form with Ox, Oy a right-handed system,
we treat w as positive when directed along Oz, and we adopt the same convention in
regard to the transverse loading Z (measured as intensity per unit area of middle
surface).* On this understanding the condition of equilibrium is

Z = DV*w, (5)
_2 B
T 81—0?¥
h denotes the half-thickness of the plate, and
E and ¢ are the Young’s modulus and Poisson’s ratio of its material.

where D (the ‘flexural rigidity’)

* Inertial and body forces (directed transversely) may contribute to Z.

51-2
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422 L. FOX AND R. V. SOUTHWELL ON RELAXATION

At the edge (i.e. the boundary of the middle surface*) it might be expected (and was
assumed by Poissont) that three external actions can be specified for every point,
namely, the line intensities of flexural moment G, of torsional moment H, and of trans-
verse (shearing) force N. But (as was first shown by Kirchhoff) the order of equation (5)
is such that only two conditions are admissible, and in the case where edge tractions
are specified the accepted boundary conditions are (Love 1927, §313; Rayleigh

1926, §216) 1
w1 ow
I 200
G — D[Vw (1— )(052+p31/)]

dH 0 oy d (*w 1dw

(6)

p denoting the radius of curvature, and v, s having the senses indicated by figure 1.
No question of a third boundary condition arises when edge s

displacements are specified, i.e. when the deflexion and slope v

of the middle surface have given values at the boundary. This

case (w and dw/dv specified at every point on the boundary)

we shall term ‘case A’ of the flexural problem (cf. §2), ‘case B’

being governed by the boundary conditions (6). FIGURE 1

THE EXTENSIONAL PROBLEM FOR THIN PLATES

5. In the theory of plane strain (Coker and Filon 1931; Love 1927§), assuming
that e_,, ¢, ¢.. vanish severally and everywhere and that e, ¢,, ¢,, are independent
of z, we satisfy the stress-equations of equilibrium, namely,

0X, 0X, JX, 97, )
Oty A0 50, HeY =0, (i
by writing X = _% Y = _%[;2,
7
9% (7)

J 2
X =5h4p0, X, =—72, Y, =% p0,

y?
Then the only ‘strain-equation of compatibility’ which is not satisfied identically,
namely,

0%, 0% d%

fad vy Xy (ii)

dy? T = oxdy’

* Strictly defined, the ‘boundary’ is that closed curve in which the middle surface is cut by the
(cylindrical) edge.

+ Cf. Love (1927, § 297).

t Love’s notation is adopted throughout this paper.

§ Love’s treatment (§§ 144-6, 299-301) does not contemplate the operation of body forces.
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2 2
requires that Viy+pV2(2,+2,) —i= 1 p(aaxg;—i—aaf ) 0 (8)

at all points within the boundary of the middle surface.

In (7) and (8) p denotes the density of the material and ¢ (as before) its Poisson’s
ratio, both quantities being uniform. If the body forces X, ¥ are conservative (so that
0X/0y = 0Y|0x), then £, and 2, can be identified and (8) reduces to

1—2¢
Xt PV =0. (8A)

If in addition self-attraction of the material may be neglected (and this will almost
always be the case), £ is a plane-harmonic function of x and y, and x accordingly
satisfies the biharmonic equation

Viy = 0. (9)

The same expressions (7) and governing equation (8) hold in the theories of ‘plane
stress’ and of ‘ generalized plane stress’ except that in these ¢ is replaced by ¢’ = ¢ (1 +0),
therefore the factor 1/(1—0), in (8), isreplaced by (1+-¢) and the factor (1—20)/(1—0),
in (8 A), is replaced by (1 —¢). Without restriction we may say that x is always governed
by an equation of the same form as (5) of § 4.

6. As in that section two main cases arise according as the boundary conditions
specify displacements or tractions. In case A each of the component displacements u
and v has a specified value at every point on the boundary, and instead of introducing
y it is more convenient to work throughout in terms of  and v, using the equations

%4+A(V2 +'f’—‘¥) — 0,
H
04 Y (10)
72 2y P
% +4( Voot ) 0,
in which 4 stands for du/dx+dv/dy, and (cf. §5)
A = 1—20, under conditions of plane strain,
— 1279 under conditions of plane stress (11)
140’ ’

These are the equations of equilibrium expressed in terms of displacements (Love
1927, §91).
7. In case B the edge tractions N,, N, (figure 2) are specified, and we can deduce
corresponding values of
N, cos (x,v) — N,sin (x, v)
= X, = X, cos (x,v) + X sin (x,v)
i} (0)(

= ay)—|~ p82, cos (x,v), according to (7),
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424 L. FOX AND R. V. SOUTHWELL ON RELAXATION
and of N, sin (x,v) + N, cos (x, )
=Y, =Y sin (x,v) + X, cos (x,v)

ai(gf) + pf2,sin (x,v), according to (7).

Accordingly dy/dx and dy/dy can be calculated for all points of the boundary from the
expressions

__. — ~[{Y —pQ,sin (x,v)} ds,
(12
% — f{XV—pQl cos (x,v)} ds,

in which the lower limits of integration are arbitrary. (Changes in these limits would
entail additions to dy/dx, dy/dy having the same values at

every point on the boundary, therefore an addition to y of the Vs v N
form Ax+By. This addition would not affect the stress-
components.) Xy

The boundary equations (12) are compatible with a single-valued
expression for y at all points of the boundary. For by Green’s trans-

Ficure 2
formation

3§{X,—p91 cos (x, v)} ds = §X,d§—pjf—§x—‘dxdy
- fﬁX,ds-{—pffdedy, by (7),

and this last expression, since it represents the resultant force in the x-direction of the forces
acting on the whole plate, must vanish for equilibrium: therefore the expression (12) for dy/dy
is single-valued, and similarly the expression for 9y/0x. Moreover the equation

ox dx 0x dy ox

Os  ds'0x ds'0y
can be integrated in the form

_ L O0X . 0X 0%x 0%y
X=%5 V% oy (85890 yasay)d‘ (13)

(again, with an arbitrary lower limit for the integral). We have seen that the first two terms in
this expression are single-valued, and the same is true of the integral, since according to (12)

._Sg( £Z§,¢+yaiza )ds = Sg[x{Y — pQ,sin (x,v)} —y{X, — pQ2, cos (x,v)}] ds

=3€(va yX, )ds+pﬂ( —~~x——)dxdy
= %(xYV—yX,,) ds+pff(xY—yX) dxdy.

This quantity measures the resultant moment about the z-axis of the external forces on the
plate, and as such it must vanish for equilibrium.
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MATHEMATICAL ASPECTS
8. To summarize §§ 4-7, we have shown that

Case A of the flexural problem entails the satisfaction of (5) by a function w such that
w and dw/dv, or (what is the same thing) dw/dx and dw/dy, take specified values at the
boundary;

Case B of the flexural problem entails the satisfaction of (5) by a function w such that
the quantities G and (N—dH/ds), as defined in (6), take specified values at the boundary;

Case A of the extensional problem entails the satisfaction of (10) by two functions
and » which take specified values at the boundary;

Case B of the extensional problem entails the satisfaction of (8) or (in special cases)
of (8A) or (9) by a function x such that dy/dx and dy/dy take specified values at the
boundary; these values being given by (12), in which X, ¥, 2, and £2, are data of the
problem.

Evidently, from a mathematical standpoint, case A of the flexural and case B of the
extensional problem are identical. In both we have to solve an equation of the form

Viw = W, (3) bis

W being specified, and to satisfy boundary conditions which fix the values of dw/dx,
dw/dy. Nearly all of published investigations (by orthodox methods) relate to one or
other of these cases.

We proceed to show that the two remaining cases (viz. case B of the flexural and
case A of the extensional problem) can be similarly identified.

9. In the flexural problem, if

w=w,+w, (14
where V2w, = 0 on the boundary, V4w, = Z/D, )
then according to (5) V2w’ is plane-harmonic, so that we may write
V' = % where V2% =0 (15)
dxdy’ )
Consequentl Viw = Viw, 42— 7p _ 0% on the boundary
1 Y U1 Gxdy T xdy ’ 16)
0 o J 2% 0% 2% 02¢)
and %V Y= (V 1+c7x0y) (3'VV W1 s (i)‘xz
so the boundary conditions (6) may be replaced by
0% Pw 1 dw
D = away (1 )(8s2+p av)
(17)

E(a(f N)M%VZU; as{gfﬂl )(gj_g;_%%_‘f)}
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426 L. FOX AND R. V. SOUTHWELL ON RELAXATION

We integrate the second of (17) to obtain

1 0 oy 0% *w 1dw
E{H—f(N+D%V wl) ds}_m—i—(l—a) (m ;%), (18)
in which the quantity on the left is single-valued since
5E(N+D 5‘7; Vzwl) ds — jgNderD f f Véw, drdy
_ cﬁNderHdedy, by (14), (1)

= 0 for equilibrium of the whole plate.

Then from (18) and the first of (17) we have (remembering that%: 2% (x,v) and

0% 0%

DA = Gsin (x, v) —cos (x,v) {H_ f (N+D a% Vzwl)ds}
0 [0¢ dw . o\ 9 (04 dw
=D % @—(l—a) {cos (x,v) 5, S0 (x,v) ﬁf:l =D % {@— (1—0) 9}%}’ )
DB = —Gcos (x,v) —sin (x, ) {H* f (N+D (% Vzwl) ds}
004 w . dn\ 0 (0¢ ow
=D % 5);_(1——0) {cos (%,v) E%—sm (x,v) %}] =D o {9}" (1—0) 59},
and we can integrate these expressions to obtain on the boundary
¢ dw B
(=) 52 _fAds — U (say),
(20)

%_(1_0) %):des =V (say).

These boundary values of U and V are single-valued. For, since (cf. figure 1)
cos (x, v) = oy/os, sin (x, v) = —0x/0s,

we have in (20), from (19),

fAds _ yf(N+D£V2wl) a’s+“Gsin (%, ) — Hcos (x, v) —y(N+D§I—/V2w1)} s,

def = —xf(N+Déa;V2wl) a’s—f{Gcos (x,v) + Hsin (x,v) —x(N+Dé%V2w1)} ds,

(21)

2 Vzwl) ds must vanish
ov

for equilibrium of the plate as a whole. Moreover, since V2w, vanishes on the boundary
according to (14), we have by Green’s theorem

and it has been shown in (i) above that the contour integral §;(N +D
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Dfﬁx——V w ds = Dfﬂ: —q—ég V2w, ds = D JxV4wldxdy= Jdexdy,

Dé;y Viw, ds = Dﬂ:y 4 ay V2w, ds = foyV‘*wﬂxdy fydedy
Consequently, when the integrals in (21) are taken round the whole boundary, we obtain

- ff;Adx = §{Hcos (%,v) —Gsin (x,v) +yN}ds+f yZdxdy,

- 3£Bds - 3§{Gcos (x,») + Hsin (x, v) =N} ds f f *Zdxdy,

and the quantities on the right of these equations are the resultant couples on the whole plate
about axes Ox and Oy respectively, both of which must vanish for equilibrium.

10. Now let U and V be functions defined by (20) not only on but also within the boundary.
Then, in virtue of (14) and (15), we have

V2U =—(1—0) i V2(w,+w'),

dx
VIV — — (1—0) 5‘; V2(w, +u), (22)
and 4= (140)V'—(1—0) Vu,,
when 4 stands for 8U+0V (23)
dx  dy’
Therefore ‘;A -+ 140 V2U+2X =0,
o4 (24)
- +1+"V2V+2Y =0,
Y
where X = 9 Vi, Y = 9 Viw (25)
1 dox 1> 1 ay 1

and V2w, is defined by (14). So U and ¥V, when their boundary values have been deter-
mined in accordance with (19) and (20), can be found from (22) exactly as in case A
of the extensional problem (§ 6) # and v can be found from equations (10) which have
the same mathematical form. Then, to complete the solution, we have only to deduce
values of 0%w/dx2, 0*w[dy?, 0%w/dxdy from the expressions

Pw, Pw o, AU )
TV = gy
Pw w av
) +o £ — Vo, = Ik (26)
2w U vV
..._2(1 -—0') W = _(—?—i—’_?}—’,
Vor. 239. A 52
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428 L. FOX AND R. V. SOUTHWELL ON RELAXATION

which hold in virtue of (15) and (20). We can proceed (if it is required) to determine
the deflexion w; but this last calculation will not be necessary if our concern is only
with stresses, since according to (26)

ofgf ). —ofi ). -i0fi+
are expressions for the required stress-couples.

11. Tosummarize §§9-10, case B of the flexural problem (boundary values specified
for G and for N—dH|ds) entails the finding (i) of a solution w, to equation (5) such that
V2w, vanishes on the boundary, and (ii) of solutions U and ¥ to (22) which take specified
values, calculable from (20) and (21), at the boundary. Part (i) of the problem can be
solved by methods published previously, part (ii) is formally identical with case A of
the extensional problem (§8).

Thus in both of these cases we have to solve simultaneous equations of the type of
(10) in which 4 is a specified constant, X and Y are specified functions of ¥ and y, and
u and v take specified values on the boundary. This problem we shall term ‘Mathe-
matical Problem I’°, and the problem stated at the end of §8 (comprising case A of
the flexural and case B of the extensional problem) we shall term ‘Mathematical
Problem II’. ‘Mixed’ boundary conditions are not considered in this paper.

(27)

II. THEORETICAL BASES OF THE RELAXATION TECHNIQUE

12. Parts III and V of this series (Christopherson and Southwell 1938; Gandy and
Southwell 1940) developed a technique of approximate solution for Laplace’s and for
Poisson’s equation.* Assuming knowledge of that technique, we now describe exten-
sions which bring biharmonic problems within its range.

‘NON-DIMENSIONAL’ EQUATIONS

To avoid unnecessary restriction, ‘dimensional’ quantities (i.e. quantities which
depend upon the choice of units) should as far as possible be eliminated from the
governing equations before these are subjected to numerical attack. Inflexural problems,
for example, we may write

x=Lx', y=Ly, w= Z%I: w', (28)

L denoting some governing dimension of the plate (e.g. the ‘waist’ of the specimen
shown in figure 15), and Z, some specified intensity of loading (e.g. unit intensity in the
units employed for L and D, or the actual intensity at the centre or some other reference
point). Then equation (5), § 4, simplifies to

V'*w = Z|Z, (a numerical function of " and y’),} (3A)

V’2 denoting the operator 92/dx'2-d2/dy’2.

* The papers in question will hereafter be cited by the short titles ‘ Part III” and ‘Part V°.
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Its form is still given by (3), but now on the understanding that x, y, w, W are purely
numerical; and any solution will apply to a whole family of plates, geometrically
similar in plan-form and similarly loaded.

Similarly in extensional problems we may write

x=Lx', y=Ly, u=Ld, v=1Lv,
together with X= z’% X, Y= ﬁ Y. } (29)
Then equations (10) of § 6 simplify to
ZA,,+A(V'2 "+X') =
v =) 10

A’ standing for g ,—l—gv,

J

Their form is still given by (10), but now on the understanding that x, y, «, v, X, ¥ are
purely numerical, and with p/u replaced by unity. Here too, any solution will apply to
a whole family of similar and similarly loaded plates.

Alternatives to (28) and (29) may be preferable in particular problems. These are
merely examples of ‘non-dimensional’ treatment.

FINITE-DIFFERENCE APPROXIMATIONS
18. Part III based its approximate methods on the relation®

1 a at . ab 5
v Zon (W) —wo =2 (Vw)o+ ez (Viw)o+ o5 5 (ViW)o+ -y
which is accurate as regards terms of order less than Nin a. It showed (§ 8) that practic-
able values of N are 3, 4 and 6, and accordingly proposed the approximations
1 a _, |
(W) —w= va’ , for use when N =3 or 4,
(30)

a? at
=4 V2w+~6—4— V4w, for use when N = 6,

as accurate to the order of the terms retained. V2w being specified (as it is in problems
governed by Poisson’s equation) these relations impose values on the quantity

[ Zow (@) —u)

* Cf. equation (7), § 7, of the paper cited, in which Z stands for V%,
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430 L. FOX AND R. V. SOUTHWELL ON RELAXATION

at every nodal point inside the boundary of the chosen net, so reducing the problem
(from an approximate standpoint) to that of solving simultaneous equations equal in
number to these nodal points. No attempt was made to solve the equations directly:
instead, a standard ‘relaxation pattern’ was employed to ‘hquldate (i.e. to dispose by
degrees of) the specified loading.

Here, in addition to such treatment of the operator V2, we require a similar treatment
of the several operators

92 2 92 o 2
0x2°  dy?>  oxdy’ v [ﬁx2+8y]

which (with purely numerical significance for ¥ and y) are presented in equations
(3A) and (10A) of § 12. This problem we now examine.

Ficure 3 Ficure 4

14. First, in regard to V* we have according to (30)

1 2
v 2o v (Vi) = Vi = ‘—l— Vw, when N = 3 or 4,

(31)
e V4w+—— Véw, when N = 6,

the first expression having an unknown error of order a3 or a4, the second an unknown
error of order a°®.

Nets of hexagonal mesh (N = 3) offer no practical advantage, but square-mesh nets

are convenient in relation to biharmonic problems. Here (figure 3) we have, according
to the first of (31) with N = 4,

at(Viw), = (a®Vw),+ ...+ (a>V2w) ,— 4(a2V2w) (i)
and from the first of (30) with N = 4, five relations of which

(@V2w)o = (wy +wy+wy+w,) — 4w, (ii)
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is typical. Substituting from the latter in (i), we deduce that
a*(Viw)o = 2y (w;) +2 24 (wy) —8 2y (w,) + 20w, (32)
2y (wy), Xy (wy), Xy (w,) standing for the sum of the w-values at the four symmetrical
points typified by I, 4, 1 respectively in figure 3.
For a triangular net (figure 4) we have similarly, from the second of (31) with N = 6,

at o, ab N T 2) a_2 2)}_(9_2 2)
E(Vw)+£6—‘L(Vw)—E{(ZVw1+...+(4Vw6 SV, )

and from the second of (30) seven relations of which

2 at .
%(V2w)o=—‘éz(V4w)o+%(w1+w2+'--+we)‘wo (iv)
is typical. Substituting from the latter on the right-hand side of (iii), and using the

approximation
2
3Zo(Vi0), — (Vi) = T (Vou)o+ ooy (v)
we find that

i [a4<v4w)0+f§ (Vu), | = Z (1) 42 (0,) — 105, (1,) + 42w, (33

15. This derivation of (32) is not entirely convincing, because terms of order a*
(and so comparable with its left-hand side) were disregarded in formulating the five
relations of type (ii). But we can, working backwards, verify that the terms neglected
in (32) are in fact of order af at least.

In Part III, § 6, the summation X, y (w) related to N points symmetrically grouped
round a central point at a distance @, one point lying on the reference line § = 0. If,
maintaining the symmetrical grouping, we rotate the points so that one lies on the line
0 = f, then a similar argument yields the relation

1
WZa’N (w) = 4, (a) +Ay(a) cos Nf+ A4,y (a) cos 2Nf+ ...
+ By (a) sin Nf+ B,y (a) sin 2Nf+-...
—a generalization of (4) of the earlier paper. In particular, when Nf = 7 we have

() = Ay (2) — Ay (8) + Agy (@) — .., etc. (34)

Applying this result to (32), in that equation we replace
2y (wy) by Xy, y(w), with N=4, f=n/N,

2y (w;) by 22a,N (w),

with N=4, f=0.
2y (w;) by Z{z,N(w)3 }
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432 L. FOX AND R. V. SOUTHWELL ON RELAXATION
Then its right-hand side is seen to be equivalent to

20w, +4[A4,(2a) + 4,4(2a) + A4(2a) + ...
+2{A,(/20) — 4,(J/20) + A /20) — ..}
—8{dy(a) +-44(a) +4g(a) + ... }]5

where as in Part I11, if terms of order 4 are neglected,

4y (a) =wo+“ (V2w)o+ (ww)

A,(a) = ka*, k being an unknown constant,
Ag(a) = 4,5(a) = ...etc. =0,

and corresponding expressions hold for 4,(2a), 4,(2a), ..., etc. Consequently to this
approximation the right-hand side of (32)

= 4wy (5+1+2—8) +a%(VZw),{22+2(/2)%>—8}
4
+ 5 (Vi) {24+2(//2) 4 — 8} -+ 4hat{2t —2(/2) 4 — 8}
= a*(V4w)y, so that (32) is confirmed.

An exactly similar treatment serves to establish (33).
16. Finite-difference approximations to 92/dx* and 9%/dy? can be deduced in the
usual way from Taylor’s series. We have in figure 3, x, y being the co-ordinates of O,

a? 62w at 64w
W+ ws— 2wy = (W) 40+ (W) - — 20, _2[2' Fr 4; P ---:L’

therefore with neglect of a* and higher powers of @

2
(9 5> may be replaced by w, -+ w;— 2w,

d
02 (85)
and (similarly) Hyz may be replaced by w,+w,—2w,.
Again, from Taylor’s series we have
| z?w a® Pw .
Wy—Wp = [wx+a x-—a]era 2[ 3 91 ax3 +.. :L y+a (1)
therefore with neglect of ¢® and higher powers of a
AN
2a(5§) may be replaced by w,—wp,
2 .
(ii)

and (similarly) 2a(%) may be replaced by w,—w, (figure 3).
4
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Also we have as in (i)

dw Jw d 0w\ a® 33 (dw
(32), (35, = 2Ly (G2) 512 (52) ] i
therefore according to (ii), with neglect of ¢* and higher powers of a

2
4q2 (%%) may be replaced by w,—wy—w,+w,. (36)
Yo

Corresponding approximations can be deduced for triangular nets (N = 6). But
equations which contain the operators d%2/dx2, 9%/dy?, 0%/dxdy are best treated with a use
of square-mesh nets.

‘RELAXATION PATTERNS’

17. Having these finite-difference approximations we can, in the manner of Part
III, §§10-11, deduce from them the consequences of a unit displacement imposed on
any nodal point. The results may be embodied in ‘standard relaxation patterns’

(@)

(@) ()

Relaxation patterns for the operators V2 and V#: triangular net (N = 6)

FIGURE 5
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434 L. FOX AND R. V. SOUTHWELL ON RELAXATION

whereby ‘residual forces’ can be liquidated, ‘group relaxations’ being derived from
these as each problem may require.

The ‘patterns’ corresponding with (35) and (36) will be applied to ‘ Mathematical
Problem I’ in combination, therefore are not worth recording separately. Figure 5 com-
pares, for nets of square and triangular mesh (N = 4 and 6), the relaxation patterns
corresponding with the plane-harmonic operator V2 and with the biharmonic
operator V4,

THE USE OF INTERLACING NETS

18. As in the treatment of Laplace’s or Poisson’s equation (Part III, §13), labour
can be saved by performing an initial liquidation of the transverse loading on a net of
coarse mesh, then using the results to obtain a trial solution which is made the starting
point of another liquidation with the use of a finer 4
net. Errors in a trial solution will be corrected in
the subsequent computation, therefore are not im-
portant except as increasing the subsequent labour:
consequently no particular procedure is obligatory
in this ‘advance to a finer net’,—practical con- |g 0 B
venience is the sole criterion.

Relaxation being a more complicated process in
biharmonic than in plane-harmonic problems, as
much use as possible should be made of coarse nets
in the early stages of computation. Insomeinstances |p c
we have found ituseful to begin with twoindependent
calculations on nets of the largest mesh, arranging
the two nets to interlace as shown in figure 6. Such treatment goes some way to
neutralize the gravest disadvantage of a coarse net, namely, that it cannot take account
of fine detail in the specified distribution of edge traction or displacement. Comparing
the two solutions we can give weight to one or other as may be thought desirable, and
the accepted values can be combined to give starting values for a finer net, nearer to
the correct values than the results for either coarse net taken by itself.

The device can equally be applied to problems of the kind discussed in Part III,
and conversely, the procedure of that paper is applicable (and has been applied) to
some of the problems of this paper.

FiGURrE 6

TREATMENT OF THE DOUBLE BOUNDARY CONDITION

19. In ‘Mathematical Problem I’ (§11), the governing equations have the form
of (10) expressed in purely numerical form (cf. § 12), and the boundary conditions fix
the values of « and v. On account of the terms in 4 both # and » appear in both of
equations (10), otherwise these would present two independent cases of Poisson’s
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equation. Orthodox treatment is difficult, and little progress has been made: for a
‘relaxation’ treatment no extension of technique is needed except a keeping account
of u and v simultaneously on two similar nets, and this has been found quite easy.

In ‘Mathematical Problem II’, on the other hand, orthodox analysis finds less
difficulty but the double boundary condition presents new obstacles to a relaxation
attack. We have to solve (3) in respect of some specified function W, also to satisfy
boundary conditions which fix the values of dw/dx and dw/dy, W, w, %, y being purely
numerical. This is a new problem, and it calls for a new technique to replace the
approximate treatment of ‘irregular stars’ (Part III, §§ 23—4).

20. In case B of the extensional problem (§7) the boundary values of dy/dx, dx/dy
and therefore y can be expressed in terms of the specified edge tractions, and in case A
of the flexural problem boundary values of w, dw/dx and dw/dy are known since w and
dw/dv are specified. Working with a net of finite mesh, we must use these data to impose
values on y or w at nodal points just inside and just outside the boundary.

FI1GURE 7a FIGURE 7

In figure 7 a these nodal points are indicated by open circles, and the boundary by
abold line; at B, on the boundary, we know the values of w and of dw/dx. Representing
wy by BD, (dw/dx); by the slope of EDF, we see that AE, CF will give an approximate
indication of w,, w., but that higher differentials of w will result in higher or lower
values as suggested by AE’, CF' or by AE", CF"'. At the start we do not know these
higher differentials, consequently have no alternative to working with the values given
by AE, CF; but some second differentials, at least, will attain their greatest values at
the boundary, so it must be expected (at least, in the early stages) that our starting
values of w will be sensibly inaccurate, and it is useless to carry liquidation more than
a short way until they have been amended.

Figure 7 b exhibits a special case in which B falls exactly on the boundary. Similar
considerations apply: we can estimate values of w both for 4 and for C, but with little
confidence. At points whose distances from the boundary—measured along a ‘string’
of the chosen net—are not greater than the mesh size 4, values of w will be dictated by
the boundary conditions; but unless a is very small they will be given neither precisely

Vor. 239. A 53
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436 L. FOX AND R. V. SOUTHWELL ON RELAXATION

nor uniquely (as is evident when it is realized that w, can equally well be estimated from
the values of w and of dw/dy at G).

21. In these circumstances the following procedure is indicated: Start with values
estimated as above from the boundary values of w, dw/dx, dw/dy without allowance for
higher differentials; carry liquidation a little way on the basis of these starting values;
then correct them in the light of the evidence so obtained. For example, if values
Wy, W;, W, are obtained by a partial liquidation, a rough plotting (figure 8) shows that
the curve of w which passes through E and F (viz. KLMEF) will not in fact touch EF
at D: consequently the correct curve may be expected to have a form of the kind shown
in dotted lines through KLmeDf, and the modified values given by M’'m, Ae, Cf may be
taken as a basis for further liquidation in whick points A and C are not relaxed. By this means
greater advantage can be taken of coarse nets in the early stages.

boundary

FIiGURE 8

22. Two points of detail should be made: First, in the determination of w, and w,
the second may be expected to dominate the third and higher differentials, consequently
in figure 8 the ratio of Fe/Ff should approximate to (AB/BC)2. Secondly, whereas for
A (figure 7 b) the boundary conditions yield two values of w which call for a compromise
(§20), the two values similarly given for the value at an external node H can both be
accepted, since there is no necessity for w (or y) to be single-valued at points outside the
boundary.

Points like 4, C and H (figures 7) correspond with boundary points in the problems
of Part III, in that their ‘displacements’ are restricted by the boundary conditions and
in consequence the residual forces on them need not be liquidated. The region in which
they lie (an irregular strip which includes the boundary) will henceforth be termed the
‘selvedge’ of the net in question, and points like 4 or like C and H will be termed internal
or external ‘selvedge points’.

PRELIMINARY ELIMINATION OF SINGULARITIES

23. Asin Part III (§5) we contemplate that singularities in the specified loading or
boundary tractions can be eliminated initially by recourse to the principle of super-
position. In two dimensions, analytical solutions exist for the effects of a concentrated
force acting either at or inside the boundary (cf. Love 1927, §§ 147-52) : using these we


http://rsta.royalsocietypublishing.org/

A A

A\

/ y

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

AL A

A \
1~

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

METHODS APPLIED TO ENGINEERING PROBLEMS 437

can transform our problem into one which does not involve singularities, therefore is
more suited to the relaxation approach. The device was not in fact employed in any of
the problems of Part III, but in Part V (e.g. § 5) it was used to dispose of a logarithmic
infinity which was encountered in a problem of conformal transformation. Here its

_application will entail more labour, since the analytical solutions are more complex;
but its principles are unchanged whether the singularity is on or inside the boundary,
so do not call for further description here.

III. PRACTICAL DETAILS OF THE RELAXATION TECHNIQUE

24. We now describe in detail, and in relation to particular examples, the relaxation
procedure by which approximate solutions can be obtained. Four separate problems
will be considered—viz. one example of each of the cases listed in §8. First we shall
exemplify case A of the extensional problem.

‘ MATHEMATICAL PROBLEM I.” AN EXTENSIONAL EXAMPLE

Giving to 4 in (10) the value 1—2¢, we have equations governing the component
displacements « and » under conditions of plane strain. Here we shall assume for o
the value 0-3 (a representative figure for steel), so that 4 = 0-4. (Under conditions of
plane stress, the description which follows will still apply, but (cf. § 6) the somewhat
different value (1—0)/(1+0¢) =7/13 must be given to 4.)

Eliminating dimensional factors in the manner of § 12, we replace (10) by (IOA) or
(on suppression of the dashes, and with 4 = 0-4 as above) by

(?2 92 0%

0%u (37)

2
o ay+|:0 4o s P 4 2]0+0-4Y= 0,

x, y, , v, X, Y being now purely numerical. Next, with a view to Relaxation Methods
we replace the differentials in (37) by their finite-difference approximations as given in
(35) and (36). Then, in the terminology of those methods, to satisfy (37) approximately
on a rectangular net of mesh-size La we must liquidate ‘residual forces’ acting at the
nodal points and given by

Fx: Fx+Ec: Fy= Fy+Fy) )
where, for any point 0, figure 3,

F,= 044’X, F, =04aY . (38)
are the ‘initial forces’ and \
F, = 1-4(u; +ug) + 04 (uy+u,) — 8-6uy+0-25(v—v5+0,—10p)

F, = 0-25(uy— up+uc—1up) +0-4(v; +v3) +1-4(v,+0,) — 3:60,

53-2
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are the forces consequent on displacements %, v occurring at 0 and at surrounding points.
For the computations we shall require ‘relaxation patterns’ (§17) giving the changes
produced in F,, F, by an isolated displacement « or v imposed at any one nodal point.
These are easily deduced from the last two of (38), and have the forms shown in figure 9.
There are two ‘patterns’ relating to # and two to v.

04 -0-25 025
14 0436 14 0
004 0-25 . —0-25

(a) Effects on F,, F, of an isolated displacement u =1 at 0

—-0:25 0-25 o4
0 04 0 4 -3-6 0-4
0-25 -025 ) 14

(6) Effects on F,, F, of an isolated displacement v =1 at 0

Ficure 9

25. Using the patterns, and keeping account of « and » simultaneously on the same
or on two similar nets, it is easy to liquidate specified forces F,, F , in the manner of
Part III. Since the boundary values of  and v are specified, points on the boundary
must not be displaced in the liquidation process.

We now describe our solution of the problem shown in figure 10, where (in non-
dimensional notation, and when L in (29) denotes the length of the shorter side) the
boundary conditions are

u = v = 0 at all points on the sides x = + 3,
u = v = 0 at all points on the sides y = —§, (39)
u=0,vx10%=4x2—9, on the side y = + 13,
and the body forces are given by
X=0, Y=-1076, (40)
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—this last figure being representative of gravity acting on a steel plate for which
L =100 cm. By treating separately the effects of the body forces and of the imposed
displacements we obtain solutions which can be superposed in any proportion.
Multiplying factors were introduced with the aim of avoiding decimal points. On
account of symmetry, only one half of the plate had to be considered.

Y
— —__—_—
—_—— 7
I’ ”
) “
x
7 0 7 L
/ 2
7
77 e Y
!“ 3L -
Ficure 10

EFFECT OF IMPOSED EDGE DISPLACEMENTS

26. Here (figure 11) we multiplied the imposed displacements by 107 to obtain edge
values —9000, — 8000, — 5000 for », and we started with a net for which ¢ = . Only
five points (in the whole plate) can be moved, so the first approximation was soon
obtained. The values shown were computed in about 10 minutes, and are such that
a change of 1 in the last significant figure would entail increased magnitudes for the
residual forces.

¢
0 0 0 o
~9000) ~8000] " 5000 o]
0 582 782 0
~4557. -3860] 2574 0
U
v
0 0 0 0
0 0 ° 0
¢

Ficure 11

Next (figure 12) we reduced the mesh-size a to § and inserted additional edge values,
then by rules which will be explained in § 28 we derived from their values in figure 11
starting approximations to the values of u, v at intermediate nodal points, and liquidated
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these with the aid of the standard ‘patterns’ of figure 9. Less than 1 hour’s work resulted
in the values shown, which satisfy the same criterion of accuracy as before. The
v-values have been only slightly altered in this ‘advance to a finer net’.

In the third and final net, ¢ was further reduced to }, and a liquidation process
occupying less than 10 hours gave the, values which are recorded in figure 13. No new

¢
ol 0 o (o) 0 0 0
-9000| -8750| -s000] -6750 5000{  -2750| 0
o 273 512 675 708 528 0
-6688, -6496] -5919] -4956] -3610] -1904 0
0 356 663 864 885 627 (o
-4358!  -4233| -3858] -3233] -2365] -1272 o
0 272 508 665 689 502 0
-2098] -2040] -1867[ -1581| -l188 -689 0
1 123
v
2 0 o o 0 o 9
0 [ 0 o 0 17 0
Figure 12
3
[ 0 o o [} (o] (%] () [} (2] o} (o] [s)
=900U| 0957‘ -8750 ’34’5'_7é 8000 - 74675 ~B750 ’5967‘ -5000 - 595,7_‘ ~2750} 1457'5 4
:
[ 84 166 244 315 375 422 452 458 455 367 289 [*]
-7856 ~7800 -7633 ~735%5) -6966 ~6463 5849 -5121 4283 3534 -2278 “139 4
o] 142 272 409 527 626 698 738 737 681 553 382 °
-6693 -6644 ~6499 ~6259 ~$924 ~5489 -4958 “4329 -36C7 =2795 1893 ~989 [
.
(%] 176 346 505 GAQ 768 852 834 882 802 636 369 )
-$522 -5482 -5362 -5163 -4885 4524 -4087 -3565 -2971 -2501 -1565 -78¢ 0
'
] 187 568 537 ©88 813 9201 943 925 834 654 375 [
-4558 -43526 -4232] -4075 -3857 3574 -5252 -2826 -2864 -1843 =270 -652 o
0 178 346 506 649 767 850 869 872 788 620 357 o
-8211 -8187 ~3120 -3006 -2848 -2644 -2597 2106 -1774 -140/ -987 525 o
[} 142 280 411 528 624 693 727 718 655 524 310 0
-2094 ~2080| -205¢ -1963 -1862 -1756 -1579 <1397 -1188 -957 -697 ~39) 0
[*] 85 168 246 315 374 418 4435 444 413 343 217 [
~-1019 ~1015 -99 -957 -910 -85/ “779 -695 -598 ~494 ~575 -231 [
k23
- v
0 [} o 0 o o o [ [ [4 [ [
[+ o 4 o o o] o 4 0 [ (] o o
¢

Ficure 13. Accepted solution of the extensional problem of Fig. 10: imposed edge displacements.
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feature calls for mention here. In all three diagrams the recorded numbers are values
of u and v multiplied by 107.

) EFFECT OF IMPOSED BODY FORCES

27. The work in this second part of the problem was exactly similar, and it will
suffice to give the final results for a net in which a = } (figure 14). A multiplying factor
10° was imposed in order to obviate decimals, so the recorded numbers are values of
u and v multipled by 10%. As was expected, the distortion produced by gravity (in a
plate of which the shorter side L = 100 cm. Cf. § 25) proved to be very small in relation
to the effect of imposing the edge displacements (39).

€
[4 [ c [ [ 0 [ o ° 0 [ [ 0
[ o [} [+ [4 [ [ [4 o 4 0 [+ 0]
0 [o} o o (o] [* [*] =1 2 -2 3 -3 [}
-15, -15 -i5 -5 =I5 -1 -5 ) -5 -14] -12 -9 [
o 2] o [ 24 [ 0 -1 -2 -2 -3 -3 Q0
“26, -26 -26 -2 -26 ~26 -26 -26 -26 -24 ~201 ~14 [+
o ] [ ° [*] [ [ [ - -l -t -l 0
-33 -33 -38 -53 -33 -53 -55 -85 -52 -30 -25 -17 ©
[ [*] [ 0 ] 2] o o 2] 4] [ o Q
-35, -35 -85 -55 -3 55 -6 -35 ~34 32 =27 -8 4
(% 7} o Qo [*] o 0 ] ! ] ! = | o
23 $3) -3 -8 -353 -33 -53 -33 32 -30 25 -17 ©
c [+] o o] o o 0 ! 2 2 3 =3 0
-26 -26 -26 -26 -26 -2c -26 -26 -26 -24 =20 14 [
' s
2} [} o 2] [+ [+] 2] ] 2 2 3 3 [}
-5 -5 -5 -5 -5 -i5 -1% -6 -6 -14 12 9 0
1 u
v
o (o] % [4] [4] 2] 0 o [ <] [ 4] 24
o o [ ] [ o [ ] o [~ [ (4 o
€

Ficure 14. Accepted solution of the extensional problem of Fig. 10: imposed body forces.

THE ‘ADVANCE TO A FINER NET’

28. At every stage in these computations except the first, we start having values
already estimated for nodal points of a coarser net, but needing values at those nodal
points which now for the first time come into the picture. Any choice of values will
leave some residual forces requiring liquidation, therefore in a sense it does not matter
how the choice is made; but a well-judged choice is desirable as entailing less labour
in subsequent liquidation. In Part IIT it was considered in relation to the single operator
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442 L. FOX AND R. V. SOUTHWELL ON RELAXATION

V2: here the governing equations involve the three distinct operators d2/dx2, 92/dy?,
02/0xdy.

Given values of # and v at nodal points of the coarse net indicated by bold lines in
figure 6, we can deduce their values at the centre of every mesh by making F,, F, zero
according to (38) with a replaced by }a, provided that we have their values for the
other nodal points of the finer net (of mesh-size {a), which are the middle points of
mesh-sides of the coarse net. Here a different procedure is required, and in treating
this example we proceeded as follows:

At O in figure 6 (for example) we used the approximations

a? (0%u ‘
0%
QaZ(M)O AV —Vp— Vet Vp, | (41)
0%u %u 92u
2(5), ~ | (32), (355, | ~ s o —20) + (e,

with similar approximations for (d%v/dx?), etc. The first of (41) conforms with (35),
a being replaced by %a; the second is obtained like (36), a being replaced by }a in (ii)
but not in (iii) of § 16; and the third is a deduction from the second of (35). Substituting
in (37), we obtain

+3(vy—vp—vo+vp) +04a%X = 0,
Fluy—up—uctup) +07(v4ve— 205+ 0, +vp—205)
+1:6(vg+vy—20,) +0-4a2Y = 0,

(42)

a denoting the mesh-size of the coarser net. From these relations u,, v, (figure 6) can be
calculated ; the other points of types O and P can be treated similarly ; and then, having
trial values of z and v, we can use (38) to calculate the initial force at every nodal point
of the finer net.

Though somewhat elaborate, this procedure (since it employs the best possible
approximations) reduces to a minimum the labour of subsequent liquidation. In this
instance it was regarded as justified by results.

‘ MATHEMATICAL PROBLEM I.” A FLEXURAL EXAMPLE

29. Cases of flexure under imposed edge tractions are not of frequent occurrence in
practice, consequently it is not easy to devise an interesting flexural example of ‘ Mathe-
matical Problem I’. Figure 15 suggests a form of test-piece, simple to manufacture,
which might be used to determine the elastic properties in bending of a sample of flat
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plate. Couples applied at the ends will be magnified by the constriction to give stresses
at the ‘waist’ which are relatively high and (by Saint Venant’s principle) practically
independent of the manner in which the edge-couples are distributed. Consequently
the stresses can be computed (within the elastic limit) on any reasonable assumption
regarding that distribution, and the results will serve to interpret the experimental
measurements.

N

Ficure 15

Here we assume uniform line-intensity of flexural couple (G) along the edges 4B,
CD in figure 15, H and N having zero values along those edges, and all of G, H, N
vanishing elsewhere on the boundary. Then, in §§9-10, since no transverse loading
(Z) is operative the function V2w, must vanish everywhere, so that X, ¥}, in (24), are
zero according to (25). Also we have from (19) ‘

4 = 0, everywhere, 1 )
i
DB = —G along AB, +G along CD, 0 elsewhere on the boundary,)
and hence from (20), G being uniform by assumption,
U = 0, everywhere,
G
V= —5Y along 4B, CD, (i)
1G — N
:Fé D AB at all points in BC, DA.
80. To eliminate dimensional factors we write
s=Lw, y=Ly, U="C0, v="0y, (43)
Vor. 239. A 54
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L now denoting the width of the specimen at its waist. Then the boundary conditions

(ii) require that
U’ = 0, everywhere,

V' = —y" along 4B, CD
= —2-5 at all points in BC
= +2-5 at all points in DA (figure 15), ]

(44)

since 4B = 5L ; and from (24), in which X, = Y, = 0, we deduce that

Y Y
G TAVU =0, G AV <o, (45)

A’ now standing for %-2]7 +%Iy/7’ and A having the value ;_—]:Z which is 2 when o =%,

as we shall here assume.
From (27), suppressing V?w,, we have
v’ o’ au’ (9V’)

i 1 N B
G 'Q_G( /+axl

“@73 - ox’’ 7]/ (46)

-G
as expressions for the stress-couples G,, G, H,, at any point in the plate; and the trans-
verse deflexion w can be calculated if required, since (cf. § 10) the three quantities (46),
divided by D, are the values of

(0x2 7 (91/2)’ ((?yz 7 (?x2)’ (I—0) dxdy”
0 o o 0 0 o o o o
=10000] ~10000] ~10000 ~10000] ~10000 =10000] =10000 =10000 =10000|
49
~10673
36 __fio) -5 -7 -5 -5 2 5 3 4 2]
10006 JPos —aae7|  -9sis| -570i|  9izo|  -s0dz| 8040 -035| -90is]|  -300¢]
i
085,
A -5 4 15 2 271 2 22 13] 7
38 1070, 900 ~8577 8374 -8241 -8153) 8034 ~8054 ~6028 ~Boll
~10853 -4
-8 17
-11980 10345
-a7 30 72] 61 48 2 16
oses fo 08| 06| miza| <rom|  ross]  <70i8)
ki)
- 072
1%
i
16 108 164 3 108 82 55) 27 3
10162 _, ~7932] -6238| “6l48 -6087| ~6046| ~60i8 =6000)
238
744 ¢ 0
10178
loo 136 259 513 123 1g0] 129] s 40 o
*10%58, pa04] 7729 6635 | ~3246 5183 =500 ~5048) ~6019 ~6000]
<330
- ~43
reeCobe.iolle )
397 465 A8 267, 218, 159
~7564 ~6399 -8687 -4230 ~Al44 ~4085 -4000)
€37, 661 643 829 26] 194)] o]
=5650 4919 -4565 =8192 -3120 =307 ~3000]
857 822 776 378 99| 222] 74] 9]
B Tas8|  ~7osc|  -20si|  ~2027] 3010  ~7600
964 925 860 777 686 693 500 A10, 5 240 159 80 0,
1982 ~1684) 1493 1845 ~1244 ~l1es =-lio ~1072 ~1045 ~1027] ~i014 -1005| ~1000
. __100s| 960| 288 5001 706 609) 514 421 252 .247] 164, 22 ..ol
0] OI 0 o oi 0] 0] 0 0] 0| 0| [2 0| 0,
¢

F1cure 16. Accepted values of U and ¥ (x4000) for the flexural problem of figure 15.
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31. Comparing (45) with (10), we have confirmation of the analogy demonstrated
in §§9-11. Interpreted ‘extensionally’, our problem is to calculate the displacements
U, V which result when specified displacements are imposed on the boundary of the
test-specimen (figure 15), and in the example now under consideration the imposed
distortion (44) has the nature of a lateral compression. There are no body forces.

Our final results for this problem (on a net of mesh-size ¢’ = a/L = ) are presented
in figure 16. The same technique was employed as in §§ 24-28, except that here, at
points near the curved part of the boundary, we had to deal with ‘irregular stars’.
These were discussed in §§ 23—4 of Part I1I, but only in relation to the single operator
V2: here they call for discussion in relation to all three of the approximations (41).

THE TREATMENT OF ‘IRREGULAR STARS’

32. Part III proceeded on the assumption (a logical consequence of replacing con-
tinuous ‘membranes’ by nets of finite mesh) that every string remains straight when a
net is deflected, and that the transverse force which it exerts is directly proportional to
its slope. Now this slope, when its ends are displaced through given distances, will be
inversely proportional to the length of the string: consequently, in the formulae for
residual forces, the force exerted by a string of standard mesh-length @ was increased
in the ratio 1/x when the string had length xa.

The same assumption may be utilized somewhat differently as follows: In figure 17,
the nodal points numbered 3 and 0 are supposed
to lie inside the boundary, but the string 01’ meets
the boundary at 1’, where accordingly the deflexion is
specified. Let the distance 01’ be denoted by £a, and
let the string be continued (as shown in broken
lines) to a point 1, outside the boundary, whose
distance from 0 is . Then (f standing indifferently
for u or v) the relation

Efi—Sfo) =S1—Jo (47)

will give a value f;, to be attached to f at the
boundary point 1’, which can be inserted in the
first of (35). Similar treatment can be applied Ficure 17
to the second of (385), but (36) presents a new problem.

Transforming the axes of co-ordinates by counter-clockwise rotation through 45°
(figure 17), it is easy to show that

442 el —2a2(02f 82f)’ (1)

oxdy 0x'2 dy’?

54-2
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446 L. FOX AND R. V. SOUTHWELL ON RELAXATION

and consistently with the first and second of (35) we may replace

»f
22 20, by fitfi— e |

5 (i)
2a? 5!},—2 by ‘]% +j;3 — 2]%,

since the distance of 0 from 5, 6, 7 and 8 is ¢,/2. Hence
40t 3 = fy oty =fo (i)

confirming (36); and the same device as before can be employed to deal with a case in
which (e.g.) the ‘string’ from 0 to 5 is cut by the boundary at a point 5, except that §
must now express the length as a fraction of a /2.

Sketching may be employed in the manner of §§ 20-1 to improve on the approxi-
mation of (47). As remarked in § 22, double or multiple values of U or ¥ can be accepted
at points outside the boundary: figure 16 shows as many as three pairs of values (for U, V)
attached to certain points.

‘MATHEMATICAL PrROBLEM 1I.” A FLEXURAL EXAMPLE

33. Here too as a first illustration we take a fairly simple example, this time of
case A of the flexural problem. We shall investigate the transverse deflexion under
uniform pressure of a clamped square plate—a system having 8-fold symmetry (viz.
symmetry with respect to both medians and both diagonals). There are no singularities
calling for preliminary elimination in the manner of § 23.

The governing equation is (5) of § 4, Z being now specified as independent of x and y:
thus Z; in (28) is identical with Z, and on elimination of dimensional factors in the
manner of § 12 (L now denoting the length of a side of the plate) we reduce the governing
equation to

Viw =1, (48)
and the boundary conditions to
dw Jw
3 = 0 By——:o, ontheedgesx =41, y=-+1, (49)

when the origin is situated at the centre of the plate. %,y and w are now purely numerical
(they are the quantities which in (28) and (3 A) were denoted by %', y’, w’).

34. On account of symmetry only one quarter of the plate need be considered, and
further simplification comes from the fact that the boundaries are straight lines
containing rows of nodal points. By displacing simultaneously, and through equal
distances, a nodal point adjacent to the straight boundary and its image point with respect
to that boundary we automatically satisfy the condition dw/dv = 0.
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0 [ [ [+ _ O
_368 334 237 102 ()
886 801 562 237 (]
1274 1149 801 334 0
g laal 1274 886 368 .. [
FiGure 18
0 0 ) 0
10 8l 48 P>
318X 25 196 7% )
458 446 246 46
n> 742 508 196 0
1019 ) 8l0 A46 8
u> 1089 742 288 L)
1284 1019 558 L]
V2 0 N4 AN
¢

Ficure 19
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448 L. FOX AND R. V. SOUTHWELL ON RELAXATION

To eliminate decimals all forces and displacements were multiplied by 10°. Liquida-
tion was started on a net of side a = { (figure 18) with the use of the standard ‘relaxa-
tion pattern’ of figure 5 (4). On its completion, V2w was calculated in accordance with
(30), then from its four corner values for each mesh a central value was deduced, to
be used as a starting assumption in the calculation of w-values for a second and finer
net (a = 1/8,/2: figure 19). This net was treated similarly to obtain starting values of

w for the final net (@ = %) of figure 20.
[ o -] g o (<] o <] o

108127, 1001 94 [59 8/]6 65128 45|12 24|20 6|12 0
9817 96514 Baslu, TIN7, e2[14 4545 24114 75| 15

516 j20 30815 28512 247)16 1968 137|26 ___75|0 24|20 ol
801,19 29416, 27217, 7“6 12 186,‘ 164 132115 "‘6 3 24114

572|8  558|29 515|110 446 (29 35316 24612 I37]26 4512 [+
546 104 652‘ 15 49216 426 |13, ’5846'5 286,14 152)15 43,4115

826(34 804|-1 742022 641[ll 50828 3536 19618 €5(26 o
78914 76217 702‘ 12 6I3|18 48619 555,5 i3 !86‘ 16 62114

104618 1019 (25 ©33016 810112 64l|H 446(22 24716 816 0|

CODO‘S 15 374'6’7 898 “’6 775[19 €13 |13 426 13, 256,5 12 T7g(17.5

121412¢ 1182 |5 108220 939|16 742122 515 |10 285 |/2 94 |32 [
llG?G 17 132117 1042[12 898|138, 70919 492]i6 27277, BQ5 1y

1318 |0 1284]28 1182 |5 1012 |25 804 |- 55829 308])5 100 ]! 4
1263 11, 123017 1132 I7 974,12 76917 6526 15 294 IG_’ 954014

826134 572|8  3IG |20 103{27 0

¢ 1854152 1818 |10 1214]26 1046
76914 546 105 30L 12 %8 17

1297/i14 1263 Hg Héz‘ 17 LOO%

¢

30

Ficure 20. Starting and accepted values of w (x 10°) for the flexural problem of § 33.

At each advance to a finer net, the starting values of w (deduced from the previous
liquidation in the manner described) were found to account for somewhat more than
the whole of the specified loading, so were multiplied by an appropriate factor (e.g.
0-958 in the case of figure 19). Similar multiplication was introduced about half-way
through the liquidation process summarized in figure 20. In that diagram both the
starting and the final (i.e. accepted) values of w are recorded, together with the loadings
for which they account. (The specified loading per nodal point, multiplied as above,
is 15:26.) The accuracy is such that greater residual forces would result from a unit

change in the last digit of any displacement.

‘MATHEMATICAL PrROBLEM II.” AN EXTENSIONAL EXAMPLE

35. Our last example concerns extensional stresses due to specified edge tensions,
a problem of the class to which photo-elastic methods are most commonly applied (§ 1).
It has in fact been so treated by Coker and Filon (1931, §7.06).
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Figure 21 records the dimensions of the B.S.I. standard ‘briquette’ for the testing
of cement, with an indication (shaded) of the ‘jaws’ by which tensile loading is applied.
The waisted form is intended to ensure fracture across the minimum section, and (on
the ground that in this neighbourhood the boundary is not stressed) a definite stress-
system is assumed to obtain at the waist, notwithstanding that the applied tractions are
not known with great precision. Uncertainty is introduced (1) by friction accom-
panying the wedging action on the jaws, due to which the applied tractions may have

4
“ 0-06 approx.
R

010" approx.

Rl

Ficure 21. B.S.I. standard cement briquette.

horizontal components although their resultant is vertical, (2) by distortion of the
briquette and of the jaws as a consequence of the pressure between them, owing to
which the load distribution cannot be predicated exactly.

The photo-elastic technique employs a model briquette and actually performs a
tensile test of this specimen between model ‘jaws’; consequently it fails to resolve the
first uncertainty, since it is hardly safe to assume that it reproduces the wedging action
exactly. Here, using the greater freedom afforded by our theoretical approach, we shall
examine the extent of that uncertainty by calculating two distinct stress-systems, viz.
(a) the stresses induced when the applied tractions are everywhere vertical and (4) the
additional stresses resulting from horizontal components which entail a pinching action
on each enlarged end. (Within the range of Hooke’s Law the two systems (a) and (4)
may be combined in any proportion.)

We shall not attempt to resolve the second uncertainty, for the reason that the finer
details of the load distribution must in any event be ‘blurred’ in computations which
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450 L. FOX AND R. V. SOUTHWELL ON RELAXATION

employ a net of finite mesh. Both in () and in (b) we shall assume the edge tractions to
be concentrated at points; but our solutions will hold (approximately) in respect of
edge tractions however distributed, provided that they have the correct resultant and
are localized in a region between two ‘strings’ of the finest net.

36. The basic theory has been given in §§ 5-7. 2, and £2, vanish in the absence of
body forces, and if Ox, Oy are respectively horizontal and vertical as in figure 21, then
the specified edge tractions are:

In case (a) of §35:

X, = 0 everywhere, '

Y, = 0 except in the region of applied load;
In case (b) of §35:

X, =0 ex.cept in the region of applied load,

Y, = 0 everywhere.

On the assumption of concentrated forces, it will follow from (12) of § 7 thatin case (a)*:

g%z 0 in the end portions of the boundary,

= + 17 in the ‘waist’ between the points of loading, 7" denoting the total tension
on the specimen, and the sign in the ambiguity being that of x,

o = 0, everywhere;

9y
in case (4):
X _
o= 0, everywhere,
(%z-— F P in the end portions of the boundary, P denoting the total pinching action

on each end, and the sign in the ambiguity being opposite to that of y,

= 0 in the ‘waist’.

The governing dimension of the briquette is the width of its narrowest section, i.e.
its width on the line y = 0. Denoting this by L, we eliminate ‘dimensional’ factors by

writing
x =L, L y=1 (50
with x = TLy in case (a), x = PLy' in case (b). )
20,7
Then, in case (a), such quantities as g—f,—z measure stresses expressed as multiples of

* Any constant value can be attached either to dx/0x or to dx/dy without affecting the stresses
(cf. §7).
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T/L, the average tensile stress at the minimum section; in case (b), they measure stresses
expressed as multiples of P/L. The boundary conditions are:

in case (a):
% = 0 in the end portions, = 41 in the ‘waist’,
' 51
o = 0, everywhere; o
ay/ b b
in case (b):
N _ 0, everywhere
0x/ 3 b
iy (52)
5;(—, = F1 in the end portions, = 0 in the ‘waist’.

In (51) the sign in the ambiguity is that of #’, in (52) it is that of —y’.

37. Boundary values of " will be required in subsequent work. A constant may be
added so as to make y’ zero at any desired point, and in case () we shall make it zero
in the end portions of the boundary (outside the points of loading) : then §' = 4 (x,—x_)
at any point P in the ‘waist’ for which x,> 0, also at the image point of P with respect
to the y'-axis. In case () we shall make ' zero in the waist, therefore — (y,—y,)
at any point @ of the end portion for which y,>y. and also at the image point of @
with respect to the x’-axis. Symmetry requires (in both cases) that dy’/dy’ = 0 at all
points of the x'-axis, dy’/dx" = 0 at all points of the y'-axis.

38. The singularities entailed by the concentrated forces can be eliminated in the
manner of § 23 with the aid of the known solution (Michell 1900, p. 35; Love 1927, § 149)

r )
Y = Er(2l9sm f—cosb), (63)

which is biharmonic with a singularity at the origin, and can be shown to represent a
concentrated force of magnitude — 1, acting at the origin in the direction of the refer-
ence line (§ = 0). It gives

x__ 1 (2—cos 26),

x 2m (54)
dy 1 .
a'—y = "2—7—1_ (26+Sln 20),

when this reference line is directed along the x-axis.

We shall utilize this solution in our treatment of case (), but in case (a), to illustrate
the power of relaxation methods, we shall take the boundary conditions (51) as they
stand. Hereafter we shall suppress the dashes attached to x, y, x, which (with a) will
accordingly stand for purely numerical quantities.

VoLr. 239. A 55
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Case (a).

39. In accordance with §18 we attack this problem on two nets, independently, of
the coarsest mesh (a = 0-4), with the aim of taking into account at an early stage as
much detail as possible of the specified edge tractions. Of the two interlacing nets in

figure 22, the first (shown in full lines) has four nodal
points in the quadrant for which residual forces have h‘.’x

to be liquidated by a use of the standard ‘pattern’, ] T \'\
the second (shown in broken lines) has two. These o w0 ! .

points are indicated by full and open circles re- j'
spectively: the remainder are too near the boundary S S 1

“On both nets liquidation is easy, and could be oy
made complete if this were thought worth while: in ‘

|
T
|
to permit relaxation. ‘ |
]

fact it is not worth while until the ‘selvedge values’ S T —
(§22) have been amended, so on these coarse nets i |

the work was done in short stages during which, “"‘+——l——'ﬂﬂ
alternately, interior points were relaxed in ac- ! l ‘
cordance with the standard pattern, ‘selvedge . -

|
g-20sd | csol
|

points’ in the light of rough plottings as described
in §§ 20-2. Figure 22 records the accepted values,
multiplied by 10* in order to obviate decimals.

Figure 23 a records accepted values of y at nodal
points of a finer net comprising both of the inter-
lacing nets of figure 22, and figure 23 b records values for a net which similarly in-
terlaces ‘the net of figure 23a. In both, a (measured as before in terms of L) = 0-2.
Starting values were obtained from figure 22 by cross-plotting, and liquidation was
effected with the aid of rough plottings as before. It substantially modified the starting
values, as can be seen by comparing the values attached to common points of figures
22 and 23a.

40. Cross-plottings of figures 23 a and 5 showed the two sets of values to be fairly
consistent with one another, those of figure 23 a being, in general, slightly higher.
Seeing no way of judging between them, we accepted both sets as starting values for
the finer net (¢ = 0-1) which is reproduced in figure 24, and we took mean values at
other points of the new net. Thereby residual forces were obtained which, since positive
values were interlaced with negative, could be liquidated without great labour. Figure
24 records the values finally accepted. Some adjustment was made to improve the
approximation of the y-gradients on the boundary near the ‘waist’.

Case (b).
41. Our treatment of this case, in which the singularities entailed by concentrated
forces were eliminated initially (§38), can be dismissed very briefly. Figure 25 records

¢
Ficure 22
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accepted values of the three stress-components X,, ¥, and X,, which in relation to
figure 24 would call for further computation with the use of the finite-difference approxi-
mations (35) and (86). It shows that the ‘first uncertainty’ of § 35 has no practical

importance. (The numbers give X,, ¥, and X, as multiples of 100 P/L).
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&—1205 1766 ¢ } . -840

©)) (o)

Ficure 23

The system defined by (53) and (54) represents (§38) a force of magnitude —1
acting in the direction of the reference line (§ = 0), so will hold in respect of the
quadrant shown in figures 22—4 when the origin is taken at the point of loading and
the x-direction from left to right. It gives boundary values of y and of dy/dx which are
continuous, but values of dy/dy which ‘jump’ at the point of loading as required by (52).
By reflexion contributions can be computed for the concentrated forces at the other
points of loading. Thereby a solution y, (say) results which, with its differentials of any
order, can be evaluated at every point. Its gradients do not satisfy (52); therefore,
writing

X=XotX1
and substituting in (52), we have boundary values without discontinuity imposed on
X1> 0%1/0%, d%,/dy, and the methods of §§ 39—40 can be employed to determine y,.

More labour is entailed by this treatment than was expended on case (). It is
justified if, but only if, accurate values are wanted of the stresses close to the points of
loading. Inthem y, predominates, and the second differentials of y, have exact analytical
expressions: consequently a reasonably close approximation to y, will yield results of
more than proportionate over-all accuracy.

55-2
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Ficure 24. Accepted values of x (x 104) for case (a), § 36.
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Ficure 25a4. Contours of X, for case (5), §36.
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Ficure 255. Contours of Y, for case (b), §36.
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Ficure 25¢. Contours of X, for case (b), §36.
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IV. RESUME

42. We have brought within the range of relaxation methods four important
problems taken from the Theory of Elasticity, and we have solved (approximately)
one example of each. But the technique developed in this paper has much wider
application (cf. § 2). The main reason for our concentration on elastic problems (apart
from their intrinsic interest and importance) is that in some of these the boundary
conditions are peculiar and specially difficult.

For none of the four examples treated is an exact solution available for comparison,
consequently no definite pronouncement can be made regarding accuracy.* All that
can be claimed for our solutions is that a change in the last digit of any recorded value
of w or x would, within the approximation of our finite-difference equations, entail ‘residual
forces’ greater than they have left unliquidated. Regarding the accuracy of the
finite-difference equations it is not possible to generalize: we know the order in a of
the quantities which they neglect, but we do not know their other factors, which are
partial differentials of w or y, so our estimates of resultant accuracy must be based
mainly on intuition.

43. Figure 25 only excepted, we have left our solutions in the form of recorded values
of w or y at nodal points of a chosen net, holding that graphical presentation by means
of contours is less accurate and no more convenient. Using (35) and (36), it is easy to
deduce the curvatures and twist from w or X,,Y,, X, from y, and then the usual formulae
can be used to deduce (if required) the principal curvatures or stresses. It does not
appear that there is any generally accepted way of representing states of complex
stress, although in photo-elastic studies it has become customary to give diagrams in
which lines show at every point the directions of the principal stresses. Where three
quantities can vary independently, three quantities are clearly necessary to a complete
specification, and X, ¥, X will do as well as any other three. Figure 25 presents these
in the form of contours for case (4) of § 35.

In the nature of the case, second derivatives of a quantity determined by approximate
methods are known with less certainty than the quantity itself; so whereas the accuracy
of our recorded x-values is greater than contour-plotting could have reproduced, this
is not always true of the derived stress-values. None the less we believe that values
obtained in this way from computed y-values have an accuracy far beyond what is
attainable by double differentiation of curves obtained by systematic sketching; and
although the photo-elastic method starts with the advantage of dealing throughout
with stresses (i.e. with second differentials of y), we understand that there too ‘smoothing’

is usually practised.

* Love (19284, b) and Hencky (1913) have given analytical discussions of the square plate bent by
uniform pressure, with some numerical results. For the central deflexion Hencky, using the Rayleigh-
Ritz method, obtained a value w =1266 (in our notation). Love gave 1672, 1344 and 1297 as
successive approximations to the numerical coefficient, adding: ‘I did no more arithmetic’.
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44. There can be no question of the value of the photo-elastic method in presenting
at once, and completely, a qualitative picture of the wanted stress-system. But quanti-
tative results, as we believe, can be obtained with greater accuracy, and probably with
less trouble, by the methods given in this paper, which are moreover applicable to
problems not yet brought within the range of photo-elastic technique. Coker and Filon
(1931, §4.39) emphasize the relative simplicity of ‘stress boundary conditions’ and
assert that ‘...little progress has been made hitherto in the study, by photo-elastic
methods, of problems involving either conditions of displacement, or mixed conditions,
at the boundary’. ,

45. It will be realized that in Section III, while we have explained the main steps
in our solutions, space has not permitted a complete description of various devices
which have been employed. As in all work of this kind, facility comes with experience,
which suggests devices appropriate to each particular problem. The essence of Relaxa-
tion Methods (cf. Southwell 1940, §§17-20 and 266) is the tentative nature of its
approach: any device may be employed to find a trial solution, since the subsequent
treatment will take account of errors; and in particular (cf. § 21) rough plottings can
be used in parallel with numerical computations, even when these aim at much higher
accuracy.

Again, an apparently complete liquidation of residuals may prove to be incomplete
when advance is made to a finer net. In such circumstances (cf. § 34) a multiplying
factor may be used to ensure that the residuals, on the finer net, have a zero total: then
positive and negative residuals will be equally common, and relatively little further
relaxation will be required to liquidate them.

Finally, advantage can often be taken of the fact that (since the governing equation
is linear) solutions can be superposed. As remarked in § 1, biharmonic analysis would be
(relatively) simple if the boundary conditions permitted us to determine V2w as a
first stage in the solution, because the deduction of w can be effected without difficulty,
once V2w is known, by the methods of Part I1I. Similarly, if we have V2w approximately
(from a solution effected by the methods of this paper), then we can without difficulty
deduce a solution w which satisfies very closely both the governing equation and either one of the
two boundary conditions. The other boundary condition will not (in general) be satisfied
exactly, but it will be satisfied approximately; so the supplementary function required
to complete our solution will be a biharmonic function which is everywhere small,
therefore need not be determined with very high accuracy.

CONCLUSION

The methods of this paper can, as we believe, be applied to any problem of the kinds
which it considers, and will yield results of more than sufficient accuracy for engineering
purposes. They are laborious, but not more laborious (for comparable accuracy) than
the photo-elastic technique which appears, at present, to be the sole alternative, It

Vor. 239. A 56
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was to be expected that they would be considerably more laborious than the methods
proposed for potential problems and the like in Part III of this series.

We acknowledge with gratitude help received from Messrs J. R. Greenand F.S. Shaw,
also from the Secretary and Staff of the Aeronautical Research Committee, in the
preparation of ink drawings suitable for reproduction.
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